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Abstract. The possibilities to determine the flavor structure of the polarized sea (antiquark) distributions
of the nucleon via vector boson (γ∗, W ±, Z0) production at high energy polarized hadron–hadron colliders,
such as the Relativistic Heavy–Ion Collider (RHIC), are studied in detail. In particular the perturbative
stability of the expected asymmetries in two representative models for the (un)broken flavor structure are
investigated by confronting perturbative QCD leading order predictions of the expected asymmetries with
their next–to–leading order counterparts.

1 Introduction

The determination of the polarized parton content of the
nucleon via measurements of the inclusive structure func-
tions gp,n

1 (x,Q2) does not provide detailed information
concerning the flavor structure of these distributions, in
complete analogy to unpolarized deep inelastic structure
functions. In particular the flavor structure of the anti-
quark (sea) distributions is not fixed and one needs to
resort to semi–inclusive deep inelastic hadron production
for this purpose [1,2]. The resulting antiquark distribu-
tions ∆q̄ are, however, not reliably determined by this
method [3,4] for the time being due to their dependence
on the rather poorly known quark fragmentation functions
at low scales.

A more reliable determination is provided via inclu-
sive vector boson (γ∗, W±, Z0) production in polarized
hadron–hadron collisions as envisaged at RHIC (BNL) or
at HERA-−→N (DESY) whose potential for the determina-
tion of ∆ū and ∆d̄ will be studied in this paper in leading
(LO) as well as next–to–leading (NLO) order of QCD.

Recently the LO Drell–Yan (γ∗) dilepton production
process for future polarized pp and pd collision experi-
ments has been suggested and studied [5,6] for delineating
the flavor–asymmetry of the polarized light sea distribu-
tions ∆ū(x,Q2) �= ∆d̄(x,Q2). In particular, the relativis-
tic field theoretic chiral quark–soliton model [7–9,2] as
well as a more recent analysis based on the statistical par-
ton model [10] predict |∆d̄(x,Q2)| > ∆ū(x,Q2). Similar
expectations [11,7,12,10,13], partly from first principles,
hold also for the unpolarized light sea distributions, d̄ > ū,
which have been already confirmed, as is well known, by
Drell–Yan µ+µ− production [14] pp and pd experiments
[15]. In general, the flavor–asymmetry of the light sea dis-
tributions can be understood in terms of flavor mass asym-
metries and ‘Pauli–blocking’ effects being related to the
Pauli exclusion principle [16,17,13].

In order to analyze the determination of (flavor-asym-
metric) light antiquark (sea) distributions one needs some
alternative models for ∆q̄, introduced in Sect. 2, and the
possibility of their experimental distinction will be investi-
gated in Sect. 3. Our conclusions are drawn in Sect. 4 and
the Appendix contains all expressions of LO and NLO
cross sections relevant for our calculations.

2 Models for the polarized antiquark
distributions of the nucleon

(i) Standard unbroken sea scenario: Here one assumes, as
in most analyses of polarization data performed thus far,
a flavor symmetric sea, i.e.

∆ū(x,Q2) = ∆d̄(x,Q2) = ∆s̄(x,Q2) ≡ ∆q̄(x,Q2) (2.1)

where as usual ∆usea = ∆ū, ∆dsea = ∆d̄ and ∆s = ∆s̄.
The adopted LO and NLO distributions will be taken from
the recent analysis of the AA Collaboration [18], in par-
ticular their LO and NLO–1 ones.
(ii) Broken sea scenario: Here one assumes ∆ū(x,Q2) �=
∆d̄(x,Q2) �= ∆s̄(x,Q2), i.e. a broken flavor symmetry as
motivated by the situation in the corresponding unpo-
larized sector [15,13]. As mentioned in the Introduction,
present polarization data do not provide detailed and reli-
able information concerning flavor symmetry breaking and
we shall therefore utilize antiquark distributions extracted
via the phenomenological ansatz of [17] which is confirmed
in the unpolarized sector and which moreover agrees well
with the predictions obtained within the framework of the
chiral quark–soliton model [7–9,2] and with a recent anal-
ysis of semi–inclusive deep inelastic data [4].

These flavor–asymmetric distributions, henceforth de-
noted by ∆f ′, are related to the (flavor–symmetric) AAC
[18] distributions ∆f by the relations
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∆u′(x,Q2
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0) − φ(x)
∆ū′(x,Q2

0) = ∆q̄(x,Q2
0) + φ(x)

∆d′(x,Q2
0) = ∆d(x,Q2

0) + φ(x)
∆d̄′(x,Q2

0) = ∆q̄(x,Q2
0) − φ(x)

∆u′
v(x,Q

2
0) = ∆uv(x,Q2

0) − 2φ(x)
∆d′

v(x,Q
2
0) = ∆dv(x,Q2

0) + 2φ(x)
∆s′(x,Q2

0) = ∆s̄′(x,Q2
0) = ∆s(x,Q2

0)
= ∆s̄(x,Q2

0) = ∆q̄(x,Q2
0)

∆g′(x,Q2
0) = ∆g(x,Q2

0) (2.2)

with ∆qv ≡ ∆q − ∆q̄ and ∆q̄ given by (2.1) at the input
scale Q2

0 = 1 GeV2, and where

φ = −∆q̄
∆u − ∆d

∆u + ∆d − 2∆q̄
(2.3)

as follows from the Pauli–blocking relation [17]

∆d̄′(x,Q2
0)/∆ū′(x,Q2

0) = ∆u′(x,Q2
0)/∆d′(x,Q2

0) (2.4)

combined with the constraints (q = u, d)

∆q′(x,Q2
0) + ∆q̄′(x,Q2

0) = ∆q(x,Q2
0) + ∆q̄(x,Q2

0)∑
q=u, d

∆q′
v(x,Q

2
0) =

∑
q=u, d

∆qv(x,Q2
0) (2.5)

needed [19] to preserve the quality of the fit [18] to gp,n
1

(x,Q2) within the standard unbroken sea scenario. Note
that ∆ū′−∆d̄′ = 2φ and that the ‘breaking’ function φ(x)
in (2.3) can be simply parametrized in LO and NLO as
well,

xφ(x)LO = x0.536(0.27 − 0.14x + 13.57x2 − 10.17x3)
×(1 − x)10.5

xφ(x)NLO = x0.32(0.12 + 0.90x − 6.68x2

+20.06x3 − 20.36x4)(1 − x)7.7 , (2.6)

which allows to form Mellin n–moments of φ needed for
performing the Q2–evolutions in n–moment space as de-
scribed, for example, in [20]. The resulting distributions
are shown in Fig. 1 at the input scale Q2

0 as well as at Q2 =
25 GeV2 and M2

W , and for comparison we also show the
flavor–symmetric sea density ∆q̄ in (2.1) of AAC [18]. It
should be emphasized that our broken distributions should
not be used well below x � 10−2 since our breaking–ansatz
[17,19] ∆d̄′/∆ū′ ≡ (∆q̄−φ)/(∆q̄+φ) = (∆u−φ)/(∆d+φ)
which results in (2.3) gives rise to artificial oscillations [19]
below x = 0.01 due to the appearance of differences of
parton distributions in (2.3). All our subsequent analyses
employ these broken distributions well above x = 10−2.
(For obvious reasons we skip from now on the ‘prime’ nota-
tion in the above equations for the flavor–asymmetric dis-
tributions and simply refer to ‘AAC’ in connection with
the original AAC–densities with their flavor–symmetric
sea ∆q̄.)

Furthermore, the unpolarized cross sections needed for
the asymmetry calculations of Sect. 3 will be evaluated
with the LO and NLO unpolarized parton distributions
GRV98 [21] utilized by the AAC [18].
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Fig. 1. Polarized (anti)quark distributions in LO and NLO
according to (2.2)–(2.6) in the flavor–broken sea scenario (full
curves) at various fixed factorization scales µ2

F ≡ Q2. For com-
parison the corresponding ‘standard’ flavor–symmetric sea dis-
tribution ∆q̄ according to AAC [18] is shown by the dashed
curves. The remaining ∆u and ∆d densities are similar in both
scenarios (cf. Fig. 5)

3 Cross section asymmetries for inclusive
hadronic vector boson production

As stated in the Introduction, the inclusive hadronic vec-
tor boson production yields reliable information on the
antiquark (sea) content of the nucleon. We shall consider
double (single) asymmetries as obtained with doubly
(singly) polarized hadron beams. The relevant expressions
for the corresponding cross sections in LO and NLO are
collected, for convenience, in the Appendix.

We shall successively study γ∗ and W±, Z0 production
in Sects. 3.1 and 3.2, respectively, starting with estimates
of expected production rates at RHIC (BNL) and turning
then to a study of the optimal ways to gain insight about
the flavor structure of the antiquark distributions in the
nucleon.

3.1 γ∗ production

The expected production rates at RHIC are determined
via the following expected energies and integrated lumi-
nosities [22]:

√
S = 50 − 500 GeV, Lpp (

√
S) � (

√
S/500

GeV) 800 pb−1 . The polarization rate for the proton
beams is expected to be Pp � 0.7 and will be obviously
lower for polarized neutrons, i.e. deuteron beams for ex-
ample. In our estimates for the expected statistical errors
we shall use P = 0.7 everywhere which represents an ide-
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alized underestimate of these rather crucial errors for the
case of d(n) beams.

Asymmetries involving only polarized protons,
although easiest to be measured experimentally, are un-
likely to provide unique signatures for a flavor–broken po-
larized light sea:

Aγ∗
pp ≡ ∆σγ∗

pp / σγ∗
pp (3.1)

LO� −
{
4[∆u(1)∆ū(2) + ∆ū(1)∆u(2)]

+∆d(1)∆d̄(2) + ∆d̄(1)∆d(2)
}/{

4[u(1)ū(2)

+ū(1)u(2)] + d(1)d̄(2) + d̄(1)d(2)
}

where (∆)σ denotes the relevant differential cross sections
summarized in the Appendix and where we make use of
the simple abbreviated ‘1,2’ notation introduced in the
Appendix as well. The size and even the sign of this asym-
metry depends already strongly on the choice of the par-
ticular set of unbroken polarized parton densities [23]. For
our sets of (un)broken distributions in Sect. 2 we obtain,
for example, at

√
S = 50 GeV and for an invariant dilep-

ton mass M = 5 GeV in pp → γ∗(M)X → µ+µ−X an
asymmetry Aγ∗

pp � +2% for the unbroken (AAC) densi-
ties and Aγ∗

pp � −(4 to 6)% for the flavor–broken scenario
for all values of xF .

As in the case of flavor–broken unpolarized parton dis-
tributions [14,15], additional polarized pn(pd) reactions
are required for delineating the flavor structure of the po-
larized light (anti)quark sea ∆ū and ∆d̄:

Aγ∗
p ± n ≡ ∆σγ∗

pp ± ∆σγ∗
pn

σγ∗
pp + σγ∗

pn

(3.2)

LO� −
{
[4∆u(1) ± ∆d(1)] [∆ū(2) ± ∆d̄(2)]

+[4∆ū(1) ± ∆d̄(1)] [∆u(2) ± ∆d(2)]
}/

{
[4u(1) + d(1)] [ū(2) + d̄(2)]

+[4ū(1) + d̄(1)] [u(2) + d(2)]
}

xF →1−−−−→ − [4∆u(1) ± ∆d(1)] [∆ū(2) ± ∆d̄(2)]
[4u(1) + d(1)] [ū(2) + d̄(2)]

Rp±n ≡ 1
2

(
1 ± ∆σγ∗

pn /∆σγ∗
pp

)
(3.3)

LO� 1
2

{
[4∆u(1) ± ∆d(1)] [∆ū(2) ± ∆d̄(2)]

+[4∆ū(1) ± ∆d̄(1)] [∆u(2) ± ∆d(2)]
}/

{
4[∆u(1)∆ū(2) + ∆ū(1)∆u(2)]

+∆d(1)∆d̄(2) + ∆d̄(1)∆d(2)
}

xF →1−−−−→ 1
2

[4∆u(1) ± ∆d(1)] [∆ū(2) ± ∆d̄(2)]
4∆u(1)∆ū(2) + ∆d(1)∆d̄(2)

� 1
2

[
1 ± ∆d̄(2)

∆ū(2)

]
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Fig. 2. The unpolarized Drell-Yan dilepton production cross
section d2σ

γ∗(M)
pp /dM dxF for

√
S = 50 and 100 GeV in NLO

based on the GRV98 [21] NLO parton distributions

where for xF → 1, i.e. x1 → 1 and x2 → 0, the small ∆q̄(1)
terms can be neglected and in the very last ‘crude’ (LO)
approximation of Rp±n the ∆d(1) terms are neglected
with respect to 4∆u(1). This latter ratio of polarized cross
sections in (3.3) has been suggested and studied in LO
originally in [5] as a very sensitive observable for testing
the flavor–asymmetry of the polarized light sea. Indeed,
at small x, Rp±n is sensitive directly to the ratio ∆d̄/∆ū

whereas Aγ∗
p ± n in (3.2) is proportional to the isoscalar and

isovector combinations ∆ū ± ∆d̄.
First we present in Fig. 2 the unpolarized cross section

dσγ∗
pp/dM dxF for

√
S = 50 and 100 GeV. It is obvious

that only for |xF | <∼ 0.5 and not too large dilepton masses
M useful production rates can be obtained. From

x0
1,2 =

1
2

(√
x2

F + 4M2/S ± xF

)
(3.4)

one infers that the small–x2 region, relevant for our study
of sea (antiquark) distributions, implies small τ ≡ M2/S
values. Here, furthermore, the NLO contributions are gen-
uine O(αs) corrections and small. Since the relevant asym-
metries decrease with

√
S we have chosen

√
S = 50 GeV

and M = 5 – 8 GeV to be the appropriate range for our
study of asymmetries related to Drell–Yan dilepton pairs
notwithstanding the fact, shown in Fig. 2, that the unpo-
larized cross sections do increase with

√
S.

As expected, Aγ∗
p−n and in particular Rpd ≡ Rp+n are

the best indicators for the flavor structure of the antiquark
(sea) distibutions: Fig. 3 presents our LO and NLO results
with the latter ones being, furthermore, remarkably sta-
ble with respect to sizeable variations of the factorization
scale µF . It should be noted that for all scenarios of po-
larized parton distributions with a flavor–symmetric light
sea, ∆ū = ∆d̄, we have Rpd → 1 and Ap−n → 0 as xF → 1
– a limit which is already reached for xF

>∼ 0.2 for most
sets of polarized parton densities as illustrated for AAC in
Fig. 3. The statistical errors shown in Fig. 3 are obtained
from (see, e.g., [22,24])
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∆Ah1 h2 � ± 1
P1P2

1√
4Lσh1 h2

(3.5)

∆Rp±n � ± 1
2P 2

1√
(App)2

1√
4Lσpp

, (3.6)

assuming P1 = P2 = P = 0.7 for the beam polarizations,
L = 80 pb−1 and bin widths ∆xF = 0.1, ∆M = 1 GeV for
calculating bin-integrated cross sections.

3.2 W ± and Z0 production

The production of these vector bosons via (un)polarized

pp(n) collisions, pp(n) → W±X → µ± (−)
ν µ X and pp(n)

→ Z0X → µ+µ−X, affords of course higher c.m. ener-
gies which are, however, available at RHIC (

√
Smax = 500

GeV) [22]. The expected cross sections, presented in Fig. 4,
are comparable to those for γ∗ production at

√
S = 50

GeV in Fig. 2. These cross sections are partly more sensi-
tive to the flavor structure of the light sea, although at far
larger scales µF ∼ MW ±,Z0 , and may discern its polarized
flavor structure not only in doubly polarized collisions but
also in the single polarization mode [25]– [27] where only
one beam is polarized. Possible benefits of this latter mode
are the expected lower statistical errors

∆Ah1 h2 � ± 1
P1

1√
4Lσh1 h2

(3.7)

i.e., a factor P−1
1 , as compared to (P1P2)−1 for the doubly

polarized mode in (3.5), as well as possibly higher lumi-
nosities. As seen in Fig. 4, the relevant rapidity range is
|y|<∼ 1 which covers the interesting range of Bjorken–x for
the sea distributions, 0.06 <∼ x <∼ 0.4 .

The relevant single and double helicity asymmetries
are

AW+

p p ≡ ∆σW+

p p / σW+

pp (3.8)
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LO� −∆u(1)d̄(2) + ∆d̄(1)u(2)
u(1)d̄(2) + d̄(1)u(2)

−−−−→
{

−∆u(1)/u(1) , y � + 1
2

∆d̄(1)/d̄(1) , y � − 1
2

AW −
p p ≡ ∆σW −

p p / σW −
pp (3.9)

LO� −∆d(1)ū(2) + ∆ū(1)d(2)
d(1)ū(2) + ū(1)d(2)

−−−−→
{

−∆d(1)/d(1) , y � + 1
2

∆ū(1)/ū(1) , y � − 1
2

AW+

pp ≡ ∆σW+

pp / σW+

pp (3.10)

LO� −∆u(1)∆d̄(2) + ∆d̄(1)∆u(2)
u(1)d̄(2) + d̄(1)u(2)

y>∼+ 1
2−−−−→ −∆u(1)

u(1)
∆d̄(2)
d̄(2)

AW −
pp ≡ ∆σW −

pp / σW −
pp (3.11)

LO� −∆d(1)∆ū(2) + ∆ū(1)∆d(2)
d(1)ū(2) + ū(1)d(2)

y>∼+ 1
2−−−−→ −∆d(1)

d(1)
∆ū(2)
ū(2)

with obvious generalizations to AW ±
p d and AW ±

pd , and where

x0
1,2 = (M2

W /S)
1
2 e±y . (3.12)

In addition we also study the following ratios of singly and
doubly polarized cross sections

∆σW+

p p

∆σW −
p p

LO� −∆u(1)d̄(2) + ∆d̄(1)u(2)
−∆d(1)ū(2) + ∆ū(1)d(2)

y<∼− 1
2−−−−→ ∆d̄(1)

∆ū(1)
u(2)
d(2)

(3.13)

∆σW+

p d

∆σW −
p d

LO� −∆u(1)[ū(2) + d̄(2)] + ∆d̄(1)[u(2) + d(2)]
−∆d(1)[ū(2) + d̄(2)] + ∆ū(1)[u(2) + d(2)]

y<∼− 1
2−−−−→ ∆d̄(1)

∆ū(1)
(3.14)

∆σW+

pp

∆σW −
pp

LO� ∆u(1)∆d̄(2) + ∆d̄(1)∆u(2)
∆d(1)∆ū(2) + ∆ū(1)∆d(2)

y>∼+ 1
2−−−−→ ∆u(1)

∆d(1)
∆d̄(2)
∆ū(2)

(3.15)

∆σW+

pd

∆σW −
pd

LO� ∆u(1)[∆ū(2) + ∆d̄(2)] + ∆d̄(1)[∆u(2) + ∆d(2)]
∆d(1)[∆ū(2) + ∆d̄(2)] + ∆ū(1)[∆u(2) + ∆d(2)]

y<∼− 1
2−−−−→ ∆d̄(1)

∆ū(1)
. (3.16)

The singly polarized asymmetries in (3.8) and (3.9) are,
for negative values of y, dominated by the polarized an-
tiquark distributions. (Note that y = −1 corresponds to
x0

2 � 0.06.) The limiting values ∆q/q and ∆q̄/q̄ of AW ±
p p
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Fig. 5. The LO (anti)quark asymmetries (∆q̄/q̄)∆q/q at the
relevant factorization scale µ2

F ≡ Q2 = M2
W , dominating the

single spin asymmetries for AW ±
p p at |y| >∼ 1

2 according to (3.8)
and (3.9)

at the scale µ2
F = M2

W are shown in Fig. 5 where they
are compared with the flavor–unbroken (AAC) scenario
as well. It is conceivable that such differences can be de-
lineated by future RHIC experiments taken into account
their expected statistical accuracy [22].

In Fig. 6 we present the expected double spin asymme-
tries AW ±

pp as defined in (3.10) and (3.11) in the broken
and unbroken (AAC) sea scenarios, as specified in Fig. 1,
in LO as well as in NLO of perturbative QCD. Here, at
large scales µF ∼ MW , the perturbative stability with re-
spect to sizeable variations of the factorization scale µF is
even more pronounced than for the Drell–Yan (γ∗) asym-
metries in Fig. 3. The expected statistical errors which are
reduced as compared to their size in the Drell–Yan (γ∗)
production asymmetries are shown in Fig. 3. It is seen that
in any case, LO or NLO estimates, a distinction between
both scenarios is possible due to the sizeable reduction in
the statistical errors involved which is mainly due to the
increased luminosity at

√
S = 500 GeV as compared to√

S = 50 GeV, relevant for Drell-Yan (γ∗) production as
discussed in Sect. 3.1. We recall here the envisaged inte-
grated luminosities at RHIC, i.e. L(

√
S) = (

√
S/500 GeV)

800 pb−1 and (3.5). In Fig. 7 we present the corresponding
single asymmetries AW ±

p p of (3.8) and (3.9) which turn out
be less sensitive to the flavor–broken sea densities than the
double spin asymmetries at y > 0 in Fig. 6. An interest-
ing feature demonstrated here is the quality of the ‘crude’
approximations in (3.8) and (3.9) which are well satisfied
at |y| >∼ 1

2 in the LO calculations where they are relevant.
The ratios of singly and doubly polarized cross sections in
(3.14) and (3.15), together with their limiting LO ‘crude’
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Fig. 6. The double spin asymmetries AW+

pp [ (3.10)] and AW −
pp [ (3.11)] at

√
S = 500 GeV in the broken and unbroken (AAC)

sea scenarios. The statistical errors are evaluated according to (3.5). The perturbative stability of the predicted asymmetries
and their sensitivity to the choice of the factorization scale µF is shown as well
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p p [ (3.8)] and AW −
p p [ (3.9)] at

√
S = 500 GeV in the broken and unbroken (AAC)

sea scenarios, as specified in Fig. 1. The statistical errors are evaluated according to (3.7). The errors on the AAC curves are
similarly small as in the broken scenario. The quality of the ‘crude’ approximations in (3.8), ∆d̄(1)/d̄(1), and (3.9), ∆ū(1)/ū(1),
is examined as well. The perturbative stability of the predicted asymmetries is similar to the one shown in Fig. 6
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Fig. 8. The ratios ∆σW+

pp /∆σW −
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p d for doubly and singly polarized cross sections, respectively, at

√
S = 500

GeV obtained via (3.15) and (3.14). The meaning of the curves corresponds to that in Fig. 7

approximations, are shown in Fig. 8. Again, on account
of the rather small expected statistical errors, it is likely
that future measurements can discriminate between the
flavor–broken (solid curves) and unbroken (dashed curves)
light–sea scenarios.

Finally we present the following ratio of combinations
of polarized and unpolarized cross sections [26], which
turn out to be less sensitive to absolute normalization un-
certainties,
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Fig. 9. The asymmetries aW
pN and aW

p N at
√

S = 500 GeV in (3.18) and (3.17), respectively, for the broken and unbroken
(AAC) scenario

aW
p N ≡

∆σW+

p p + ∆σW −
p p −

(
∆σW+

p n + ∆σW −
p n

)
σW+

pp + σW −
pp + σW+

pn + σW −
pn

(3.17)

LO�
{
[∆u(1) − ∆d(1)] [ū(2) − d̄(2)]

−[∆ū(1) − ∆d̄(1)] [u(2) − d(2)]
}/

{
[u(1) + d(1)] [ū(2) + d̄(2)]

+[ū(1) + d̄(1)] [u(2) + d(2)]
}

and its corresponding doubly polarized counterpart

aW
pN ≡

∆σW+

pp + ∆σW −
pp −

(
∆σW+

pn + ∆σW −
pn

)
σW+

pp + σW −
pp + σW+

pn + σW −
pn

(3.18)

LO�
{
[∆u(1) − ∆d(1)] [∆ū(2) − ∆d̄(2)]

−[∆ū(1) − ∆d̄(1)] [∆u(2) − ∆d(2)]
}/

{
[u(1) + d(1)] [ū(2) + d̄(2)]

+[ū(1) + d̄(1)] [u(2) + d(2)]
}
.

Both asymmetries have no polarized gluon contribution
proportional to ∆g in NLO, which cancels in the various
differences ∆σp p − ∆σp n and ∆σpp − ∆σpn. Further-
more, the double helicity asymmetry in (3.18) vanishes for
∆ū = ∆d̄ in LO as well as in NLO and is thus an interest-
ing combination to observe the effects of a flavor–broken
sea due to ∆ū �= ∆d̄. This is explicitly demonstrated
in Fig. 9 where the sizeably different expectations of the
flavor–broken sea scenario should be easily discernible ex-
perimentally.

Finally, for Z0 production we have found that the fol-
lowing two double and single spin asymmetries are best
suited for the investigation of the flavor structure of the
sea:

AZ0

pp ≡ ∆σZ0

pp / σZ0

pp (3.19)
LO� −

{
αu[∆u(1)∆ū(2) + ∆ū(1)∆u(2)]

+αd[∆d(1)∆d̄(2) + ∆d̄(1)∆d(2)]
}/

{
αu[u(1)ū(2) + ū(1)u(2)]

+αd[d(1)d̄(2) + d̄(1)d(2)]
}

AZ0

p, p−n ≡ ∆σZ0

p p − ∆σZ0

p n

σZ0
pp + σZ0

pn

(3.20)

LO�
{

− [βu∆u(1) − βd∆d(1)] [ū(2) − d̄(2)]

−[βu∆ū(1) − βd∆d̄(1)] [u(2) − d(2)]
}/

{
[αuu(1) + αdd(1)] [ū(2) + d̄(2)]

+[αuū(1) + αdd̄(1)] [u(2) + d(2)]
}

where αq ≡ v2
q + a2

q and βq ≡ 2vqaq as explained and
given in the Appendix. These asymmetries are depicted,
together with their expected statistical errors, in Fig. 10. It
should be emphasized that these Z0–production asymme-
tries are up to an order of magnitude larger in the flavor–
broken (∆ū �= ∆d̄) scenario than for flavor–symmetric sea
densities (∆ū = ∆d̄) where they become almost unmea-
surably small.

4 Summary and conclusions

The possibility to determine the flavor structure of the
polarized antiquark (sea) distributions of the nucleon via
vector boson (γ∗, W±, Z0) production at high energy po-
larized hadron–hadron (pp, pn (d )) colliders was inves-
tigated. The perturbative stability of the expected asym-
metries for two representative models for the flavor struc-
ture of the sea distributions was studied and has shown
that the predicted distinctive signatures for both flavor–
symmetric and flavor–asymmetric models remain essen-
tially unchanged in LO and NLO of perturbative QCD.
This demonstrates that these characteristic and distinc-
tive features are genuine signatures of the models under
consideration for the flavor structure of the polarized sea.



84 M. Glück et al.: On the determination of the polarized sea distributions of the nucleon

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

-1.5 -1 -0.5 0 0.5 1 1.5

y

App
Z0

broken scenario

AAC

→ →
LO

NLO

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-1.5 -1 -0.5 0 0.5 1 1.5

y

Ap,p-n
Z0

→

Fig. 10. The asymmetries AZ0

pp and AZ0

p, p−n in LO and NLO at
√

S = 500 GeV given in (3.19) and (3.20), respectively. The
meaning of the curves corresponds to that in Fig. 9

In particular the polarized Drell–Yan (γ∗) dilepton
production asymmetry Aγ∗

p−n in (3.2), as obtained from
pp and pn collisions, or the ratio Rpd of polarized pp
and pn production cross sections in (3.3) provide us with
characteristic and direct signatures for a flavor–broken po-
larized sea, ∆ū �= ∆d̄, as illustrated in Fig. 3. At much
larger factorization scales µ2

F ∼ M2
W, Z , the double spin

asymmetries AW ±
pp for W± production in (3.10) and (3.11),

or combinations of doubly polarized pp and pn W±–
production cross sections in (3.18) constitute similar clean
and distinctive observables for studying the flavor struc-
ture of the polarized light sea, as shown in Figs. 6 and
9. Somewhat less sensitive signatures for a flavor–broken
sea are provided by the single spin asymmetries AW ±

p p in
(3.8) and (3.9), although they may give access directly to
∆d̄(x,M2

W ) and ∆ū(x,M2
W ) in specific kinematic regions

(y <∼ −0.5). Such direct signatures for ∆d̄ and ∆ū could
also be obtained from studying ratios of W+ and W−
cross sections of singly and doubly polarized pd collisions,
cf. (3.14) and (3.16). Finally, the double spin asymme-
try AZ0

pp for Z0 production at RHIC is an equally useful
observable for delineating the flavor structure of the po-
larized sea, since it is expected to be about an order of
magnitude larger for a flavor–broken (∆ū �= ∆d̄) than for
a flavor–symmetric (∆ū = ∆d̄) polarized sea scenario as
shown in Fig. 10.

The resolution power of the asymmetries studied de-
pends of course on the expected statistical errors which
were estimated for the envisaged beam polarizations and
luminosities at RHIC. They point towards the superior-
ity of vector boson (W±, Z0) production (Figs. 6 – 10)
over the common Drell-Yan γ∗ production (Fig. 3) as a
tool for studying the flavor structure of the polarized sea
distributions. This derives mainly from the increased lu-
minosity at the corresponding higher energies involved in
vector boson production, i.e.

√
S � 500 GeV, as compared

to
√
S � 50 GeV relevant for γ∗ (dilepton) production as

discussed in Sect. 3.1.

Appendix

Here we summarize all those unpolarized and polarized
cross sections for (Drell-Yan) vector boson (γ∗,W±,Z0)
production in LO and NLO(MS) needed for calculating
the various spin-asymmetries suggested and studied in this
paper.

In terms of cross sections of definite positive and neg-
ative hadron helicities (±), an unpolarized cross section is
generally defined by σ = 1

4 (σ++ + σ+− + σ−+ + σ−−).
The relevant differential unpolarized Drell-Yan cross sec-
tion for h1h2 → γ∗X → l+l−X can be written as

M2 dσγ∗
h1h2

(xF ,M
2, µ2

F )
dM2dxF

= Nγ∗ ∑
q=u,d,s

e2
q

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2

×
{[

D
(0)
qq̄ (x1, x2, x

0
1, x

0
2) +

αs

2π
D

(1)
qq̄

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)]

×
{
q(x1, µ

2
F )q̄(x2, µ

2
F ) + q̄(x1, µ

2
F )q(x2, µ

2
F )
}

+
αs

2π
D(1)

gq(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)
g(x1, µ

2
F )
{
q(x2, µ

2
F ) + q̄(x2, µ

2
F )
}

+
αs

2π
D(1)

qg

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)

×{q(x1, µ
2
F ) + q̄(x1, µ

2
F )
}
g(x2, µ

2
F )

}
(A.1)

with Nγ∗
= 4πα2/9S, αs = αs(µ2

F ), D(0)
qq̄ (x1, x2, x

0
1, x

0
2) =

δ(x1 − x0
1)δ(x2 − x0

2)/(x
0
1 + x0

2) and according to the
NLO(MS) results of [28,23]

D
(1)
qq̄

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)

= CF

{
δ(x1 − x0

1) δ(x2 − x0
2)

x0
1 + x0

2

×
[
π2

3
− 8 + 2Li2(x0

1) + 2Li2(x0
2) + ln2(1 − x0

1)
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+ ln2(1 − x0
2) + 2 ln

x0
1

1 − x0
1
ln

x0
2

1 − x0
2

]
+

(
δ(x1 − x0

1)
x0

1 + x0
2

×
[

1
x2

− x0
2

x2
2

− x0
2

2 + x2
2

x2
2(x2 − x0

2)
ln

x0
2

x2
+

x0
2

2 + x2
2

x2
2

×
(

ln(1 − x0
2/x2)

x2 − x0
2

)
+

+
x0

2
2 + x2

2

x2
2

1
(x2 − x0

2)+

× ln
(x0

1 + x0
2)(1 − x0

1)
x0

1(x
0
1 + x2)

]
+ (1 ↔ 2)

)

+
GA(x1, x2, x

0
1, x

0
2)

[(x1 − x0
1)(x2 − x0

2)]+
+ HA(x1, x2, x

0
1, x

0
2) + ln

M2

µ2
F

×
{
δ(x1 − x0

1) δ(x2 − x0
2)

x0
1 + x0

2

[
3 + 2 ln

1 − x0
1

x0
1

+ 2 ln
1 − x0

2

x0
2

]

+
(
δ(x1 − x0

1)
x0

1 + x0
2

x0
2

2 + x2
2

x2
2

1
(x2 − x0

2)+
+ (1 ↔ 2)

)}}

(A.2)

D(1)
qg

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)

= TF

{
δ(x2 − x0

2)
(x0

1 + x0
2)x

3
1

[
(x0

1
2
+ (x1 − x0

1)
2)

× ln
(x0

1 + x0
2)(1 − x0

2)(x1 − x0
1)

x0
1x

0
2(x1 + x0

2)
+ 2x0

1(x1 − x0
1)

]

+
GC(x1, x2, x

0
1, x

0
2)

(x2 − x0
2)+

+ HC(x1, x2, x
0
1, x

0
2)

+ ln
M2

µ2
F

{
δ(x2 − x0

2)
(x0

1 + x0
2)x

3
1
(x0

1
2
+ (x1 − x0

1)
2)

}}
(A.3)

where CF = 4/3, TF = 1/2, Li2(x) = − ∫ x

0 dt ln(1 − t)/t
and

GA(x1, x2, x
0
1, x

0
2)

=
(x1 + x2)(x0

1
2x0

2
2 + x2

1x
2
2)

x2
1x

2
2(x

0
1 + x2)(x1 + x0

2)

HA(x1, x2, x
0
1, x

0
2)

= − 2
x1x2(x1 + x2)

GC(x1, x2, x
0
1, x

0
2)

=
2x0

1x
0
2 − x1x2

x2
1x2(x0

1 + x2)

HC(x1, x2, x
0
1, x

0
2)

=
x1(x0

1 + x2)(x2 − x0
2) + 2x0

1x
0
2(x1 + x2)

x2
1x

2
2(x1 + x2)2

. (A.4)

Furthermore

D(1)
gq

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)
= D(1)

qg

(
x2, x1, x

0
2, x

0
1,

M2

µ2
F

)
(A.5)

with the factorization scale µF , usually assumed to be
given by M , and x0

1,2 given by (3.4), with the constraints
τ ≤ x0

1,2 ≤ 1 and −1 + τ ≤ xF ≤ 1 − τ . Alternatively one
may define x0

1,2 =
√
τe±y with the lepton pair rapidity

y in the hadron-hadron c.m. system being constrained by
ln

√
τ ≤ y ≤ − ln

√
τ . The unpolarized cross sections for

vector boson (V B = W±, Z0) production can be written
as (for simplicity we use the same symbols for the coeffi-
cient functions as in (A.1) although they obviously differ
for different processes)

dσV B
h1h2

(y, µ2
F )

dy

= NV B
∑
q,q′

cV B
qq′

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2

{[
D

(0)
qq̄ (x1, x2, x

0
1, x

0
2)

+
αs

2π
D

(1)
qq̄

(
x1, x2, x

0
1, x

0
2,

M2
V B

µ2
F

)]{
q(x1, µ

2
F )q̄′(x2, µ

2
F )

+q̄(x1, µ
2
F )q′(x2, µ

2
F )
}

+
αs

2π
D(1)

gq

(
x1, x2, x

0
1, x

0
2,

M2
V B

µ2
F

)
×g(x1, µ

2
F )
{
q′(x2, µ

2
F ) + q̄′(x2, µ

2
F )
}

+
αs

2π
D(1)

qg

(
x1, x2, x

0
1, x

0
2,

M2
V B

µ2
F

)

×{q(x1, µ
2
F ) + q̄(x1, µ

2
F )
}
g(x2, µ

2
F )

}
(A.6)

with NV B =
√

2πGFM
2
V B/3S, using MW = 80.42 GeV

and MZ = 91.19 GeV , and cW ±
qq′ = |Vqq′ |2 with the rele-

vant CKM matrix elements Vud ≈ 0.97 and Vus ≈ 0.22,
and cZ0

qq′ = δqq′ (v2
q + a2

q) with v2
u + a2

u ≈ 0.29 and v2
d +

a2
d ≈ 0.37. Furthermore we have now D

(0)
qq̄ (x1, x2, x

0
1, x

0
2) =

δ(x1 − x0
1)δ(x2 − x0

2) and the NLO(MS) coefficients D
(1)
qq̄

and D
(1)
qg are given by (15) and (16) of ref. [29], with D

(1)
gq

being again given by (A.5).
The doubly longitudinally polarized cross sections are

generally defined via ∆σh1h2 = 1
4 (σ++ − σ+− − σ−+ +

σ−−). The relevant differential polarized Drell-Yan cross
section for h1h2 → γ∗X → l+l−X is given by (1,2 denote
the arguments x1,2,µF and . . . denotes the variables of the
coefficient functions in (A.2–A.6))

M2 d∆σγ∗
h1h2

(xF ,M
2, µ2

F )
dM2dxF

= −Nγ∗ ∑
q=u,d,s

e2
q

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2

×
{[

D
(0)
qq̄ (. . .) +

αs

2π
D

(1)
qq̄ (. . .)

]

×
{
∆q(1)∆q̄(2) + ∆q̄(1)∆q(2)

}
+
αs

2π
∆D(1)

gq (. . .)∆g(1) {∆q(2) + ∆q̄(2)}
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+
αs

2π
∆D(1)

qg (. . .) {∆q(1) + ∆q̄(1)}∆g(2)

}
(A.7)

where D
(0,1)
qq̄ are as in (A.1) with D

(1)
qq̄ given in (A.2) and

[23]

∆D(1)
qg

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)

= TF

{
δ(x2 − x0

2)
(x0

1 + x0
2)x

2
1

×
[
(2x0

1 − x1) ln
(x0

1 + x0
2)(1 − x0

2)(x1 − x0
1)

x0
1x

0
2(x1 + x0

2)

+2(x1 − x0
1)

]
+

∆GC(x1, x2, x
0
1, x

0
2)

(x2 − x0
2)+

+HC(x1, x2, x
0
1, x

0
2)

+ ln
M2

µ2
F

{
δ(x2 − x0

2)
(x0

1 + x0
2)x

2
1
(2x0

1 − x1)

}}
(A.8)

with HC(. . .) given in (A.4) and

∆GC(x1, x2, x
0
1, x

0
2) =

(x0
1x

0
2)

2 + (x1x2 − x0
1x

0
2)

2

x3
1x

2
2(x

0
1 + x2)

. (A.9)

Similarly to (A.5) we have

∆D(1)
gq

(
x1, x2, x

0
1, x

0
2,

M2

µ2
F

)

= ∆D(1)
qg

(
x2, x1, x

0
2, x

0
1,

M2

µ2
F

)
. (A.10)

The doubly longitudinally polarized cross sections for vec-
tor boson production are given by

d∆σV B
h1h2

(y, µ2
F )

dy

= −NV B
∑
q,q′

cV B
qq′

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2

×
{[

D
(0)
qq̄ (. . .) +

αs

2π
D

(1)
qq̄ (. . .)

]

×
{
∆q(1)∆q̄′(2) + ∆q̄(1)∆q′(2)

}
+
αs

2π
∆D(1)

gq (. . .)∆g(1) {∆q′(2) + ∆q̄′(2)}

+
αs

2π
∆D(1)

qg (. . .) {∆q(1) + ∆q̄(1)}∆g(2)

}
(A.11)

with NV B , cV B
qq′ and D

(0,1)
qq̄ as in (A.6) and ∆D

(1)
gq is now

given by (18) of ref. [29] which relates to ∆D
(1)
qg again via

(A.10).
Finally, the singly longitudinally polarized cross sec-

tions for vector boson (V B = W±, Z0) production are

generally defined via ∆σh1h2 = 1
4 (σ+++σ+−−σ−+−σ−−)

which are given by [29]

d∆σV B
h1h2

(y, µ2
F )

dy

= NV B
∑
q,q′

cV B
qq′

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2

×
{[

D
(0)
qq̄ (. . .) +

αs

2π
D

(1)
qq̄ (. . .)

]

×
{

− ∆q(1)q̄′(2) + ∆q̄(1)q′(2)
}

+
αs

2π
∆D(1)

gq (. . .)∆g(1) {q′(2) − q̄′(2)}

+
αs

2π
D(1)

qg (. . .) {−∆q(1) + ∆q̄(1)} g(2)
}

(A.12)

where all normalizations, couplings and coefficient func-
tions are as in (A.11) except for cZ0

qq′ which is now given
by cZ0

qq′ = δqq′ 2vqaq, i.e. cZ0

uu = 1
2 − 4

3 sin2 ΘW ≈ 0.19 and
cZ0

dd = cZ0

ss = 1
2 − 2

3 sin2 ΘW ≈ 0.35.
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